
 

11861 ART—Supplemental Material on Treatment of Data Below MDL 

In this study, many of the reported measurements were at levels below the Method 

Detection Limit (MDL).  Across all hazardous air pollutants (HAPs), about 60% of reported 

measurements in the data set were below the MDL.  Data below MDL are reported to the Air 

Quality System (AQS) in a variety of ways, including values of zero, MDL, MDL/2, MDL/3, or 

the measured value.  Using reported values can introduce systematic jurisdictional biases for data 

below MDL. However, the large fraction of data below the MDL did not preclude their use in 

this analysis. When even a small fraction of reported data is above MDL, techniques are 

available to calculate annual averages with reasonably small uncertainties such as substitution, 

Kaplan-Meier, and Regression on Order statistics.  Explanations of the differences in methods 

for substitution of data below MDL to better estimate summary statistics such as the mean 

concentration have been the subject of much recent work (Helsel 2005a,b; Antweiler and Taylor 

2008). Here we present background material on how we determined that substituting 85% of 

data below MDL was a reasonable limit for estimating annual mean concentrations. 

Methods 

A subset of the ambient monitoring database was used to develop a test of the various 

below MDL substitution methods.  Measurements of 1,3-butadiene (25 monitoring sites), 

1,4-dichlorobenzene (22 monitoring sites), and tetrachloroethylene (19 monitoring sites) from 

2003 to 2005 were taken from the larger database.  Measurements of the pollutants at each of the 

monitoring sites were reported with better than 90% of data above the MDL.  True mean 

concentrations were calculated based on these reported values for each of the individual 

pollutants. 



 

 

After calculating the true mean concentrations at each sites, we censored the values at 

each sites so that a specified percentage of data would, in effect, mimic being reported below the 

MDL. For example, if the median concentration reported at a site was 0.5 μg/m3, we censored 

data below 0.5 μg/m3 to mimic the effect of having 50% of reported data below the MDL.  After 

censoring the data set at intervals of 10%, we used four below-MDL substitution techniques and 

calculated the annual mean concentration for each of the methods.  Absolute percentage 

differences between the true mean concentration and the substituted method were calculated for 

each of the sites and pollutants. We then took the mean percentage bias for each of the sites and 

pollutants along with the standard deviation across all sites.  

The four techniques used to investigate substitution of data below the MDL are listed in 

Supplemental Table 1.  For more information on the more sophisticated treatments, the interested 

reader is referred to Antweiler and Taylor (2008).   

Results 

Supplemental Figure 1 illustrates the results from the MDL substitution analysis.  All 

methods are essentially comparable at 50% or less of data below MDL, although Kaplan-Meier 

does have a higher mean bias than the other three methods.  At 80% of data reported below 

MDL, the mean percentage bias is still below 20% for maximum-likelihood estimation, 

regression-on-order statistics, and MDL/2 substitution.  While there are certainly some outliers, 

the pattern of increasing percentage bias does not go exponential until the 80-90% range.  At this 

point, the bias starts to become large relative to the concentration regardless of method.  These 

results are qualitatively similar to the results of Antweiler and Taylor (2008).  In contrast to our 

results, they found that the bias in the mean concentration “exploded” at a value of 70% of 

reported samples below detection.  We found that the bias “exploded” at a percentage above 



 

80%. It is possible that our method arbitrarily chose one MDL for each mean value, which 

would reduce the bias relative to a data set with multiple reported MDLs.  However, more than 

95% of all reported HAPs measurements have only a single MDL reported at a monitoring site 

over the course of a year. 

Discussion 

Air toxics monitoring data typically display a log-normal distribution of concentrations.  

In other words, most reported samples have low concentrations, but a few samples have much 

higher concentrations. When calculating an annual mean concentration, the value is 

predominantly reflective of these high outlier concentrations and their frequency relative to the 

lower concentrations. In data sets where even a small fraction of these high outlier 

concentrations are above the MDL, the mean concentration will predominantly reflect the 

influence of the high concentrations. Our results in Supplemental Figure 1 and the results from 

Antweiler and Taylor (2008) provide a reasonable certainty that the relative bias in the mean 

concentration will be small.  Our estimates show that the average bias is on the order of 20% and 

that most substituted mean concentrations will be within 50% of the true mean concentration 

when up to 85% of the data is below MDL. 

Biases in mean concentrations of 50% are small relative to our estimates of the national 

distribution of observed concentrations for all air toxics.  Most of the observed pollutant 

concentration distributions vary by a factor of 6 to 20 nationally.  A bias in mean concentrations 

of 50% is small relative to the national distributions, and the conclusions are not based on 

quantifying concentrations to within a factor of 2.  Moreover, in Tables 1 and 2 of the 

manuscript, we only use the fraction of data reported below MDL as a measure of confidence in 

our mean concentrations.  Those sites and pollutants with more than 85% of data below the MDL 



 

 

are not considered to have quantifiable mean concentrations.  Comparisons are only made 

between the reported mean MDL value and the health benchmark to determine whether the 

concentration could potentially exceed the health benchmark value.  

Supplemental Table 2 provides the national percentage of data reported below MDL for 

each pollutant examined in this study for the years 2003-2005. 
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Supplemental Table 1.  Description of substitution methods investigated.    

MDL substitution Method description method 

MDL value is divided by two and substituted for all MDL/2 measurements below the MDL. 
Kaplan-Meier Survival Produces estimates of the survival function.  The fit to the 
Analysis survival function is used to calculate summary statistics. 

Estimates distribution of data by fitting observations.  The Regression-on-Order fit to the observed data is used to extrapolate the censored Statistics data concentrations and calculate summary statistics. 
Maximum Likelihood Assumes a distribution of data to solve a likelihood 
Estimation function based on data above and below censored values. 

 



 

Supplemenal Table 2.  Percent of samples reported below the MDL for the U.S. from 2003-2005. 

Percent below  Percent below  PARAMETER PARAMETER MDL MDL 

1,1,2,2-Tetrachloroethane 96.6 Chloroprene  99.2 
1,1,2-Trichloroethane 98.4 Chromium VI  54.9 
1,1-Dichloroethane 97.4 Chrysene 86.8 
1,1-Dichloroethylene 97.9 Cobalt 96.2 
1,2,4-Trichlorobenzene 90.0 Dibenzo[A,H]Anthracene 97.9 
1,2-Dichloropropane 96.1 Dichloromethane 52.6 
1,3-Butadiene 25.7 Ethylbenzene  9.5 
1,3-Dichloropropene (sum) 95.8 Ethylene Dibromide 98.0 
1,4-Dichlorobenzene 64.2 Ethylene Dichloride  95.2 
1,4-Dioxane 93.5 Ethylene Oxide 37.6 
3-Chloropropene 99.8 Formaldehyde  34.9 
Acetaldehyde 4.0 Hexachlorobutadiene 95.1 
Acetonitrile 58.0 Hydrogen Sulfide 91.1 
Acrolein 43.0 Indeno[1,2,3-Cd]Pyrene 92.4 
Acrylonitrile 70.4 Isopropylbenzene 61.0 
Arsenic 60.4 Lead  37.2 
Benzene 2.2 Manganese  34.8 
Benzo[A]Anthracene 90.4 Mercury  87.2 
Benzo[A]Pyrene 93.8 Methyl Chloroform 72.1 
Benzo[B]Fluoranthene 89.9 Methyl Isobutyl Ketone 87.1 
Benzo[K]Fluoranthene 93.0 Methyl Methacrylate 97.9 
Benzyl Chloride 94.7 Methyl Tert-Butyl Ether 57.5 
Beryllium 82.4 Naphthalene 51.5 
Bromoform 99.9 n-Hexane 2.1 
Bromomethane 92.0 Nickel  56.7 
Cadmium 92.8 Selenium  54.6 
Carbon Disulfide 73.4 Styrene 51.2 
Carbon Tetrachloride 41.9 Tetrachloroethylene 68.9 
Chlorobenzene 83.5 Toluene 0.8 
Chloroethane 92.5 Trichloroethylene 86.7 
Chloroform 74.4 Vinyl Acetate 17.5 
Chloromethane 5.5 Vinyl Chloride  96.3 

   



 

 

 

Supplemental Figure 1.  Average percent bias in the mean concentration as a function of the 
percentage of data below detection for four substitution methods.  Error bars indicate the 
standard deviation. 
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